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Military recruiting productivity may be viewed as the number
of successful enlistments in a given recruiting time interval, and
also as a Poisson-distributed random variable. One measure of
effectiveness for recruiters is the probability of meeting a
specified minimum number of enlistments (making mission). The
Poisson model permits investigation of the impact on this performanc
measure when the length of the mission period is changed, to when
recruiter production is aggregated as in station missioning.
Immediate results are that less effective recruiters benefit
from shorter mission periods, while the effective recruiter will
benefit from longer mission periods. Also, estimates of this
probability should be improved with the Poisson model, rather than
treating the attribute of making mission as a Bernoulli trial.
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SUMMARY
The numter of successful enlistments in a t', -ecruiting interval is considered as a

Poisson-distributed random variable, and prop -. die Poisson are used to examine
various aspects of the recruiting process. An immed ,e result is that with a mission of two
enlistments per month, a recruiter whose average perfonrance is the mission level of two
per month will have only a 60% chance of making missio~n. To have a 90% chance of
making mission, a recruiter must perform, on the average, at leat 40% better than the
mission value.

The chance of making mission is sensitive to the length of the mission perioi even
when seeming adjustments are made in the size of the mission. Doubling both the nission
and the time period to achieve the mission will. for the same recruiter, change the
probability of making mission. It appears that when the probability of making mission is to
be computed as the MOE, less effective recruiters will benefit from shorter mission
periods, while the effective recruiter will benefit from longer mission periods. Similar
results occur when the performance of several recruiters is combined, as would be done in
station missioning. It is clear that direct comparisons between different time periods or
among several individual recruiters on stations should always involve mission periods of
the same length.

When the measure of effectiveness is the probability of making mission, estimation of
that probability should be improved when the number of rcruiting successes is treated as
Poisson distributed. In general, the size of resulting confidence intervals seems smaller
when recruiting results are treated as Poisson than when, for a recruiting period, the
attribute of making mission is treated as a Bernoulli trial.

This paper is exploratory in that detailed analyses of these results were not undertaken.
Rather, we have looked at the kinds of contributions the Poisson model can make to our
understanding of the recruiting process.



RECRUITER PRODUCTIVITY
and the

POISSON DISTRIBUTION

Glenn F. Lindsay

A useful premise in studying recruiter productivity is that the number of recruiting

successes in a specified time interval is a random variable. This means that for a

measurement time period of one month, for example, the number of recruiting successes

will vary from month to month even if other factors remain constant. These differences are

due to random variations rather than real changes in performance. Similarly, a recruiter or

team of recruiters operating with the same performance level will produce different

numbers of recruiting successes from month to month. If x is the number of successes in a

time period, then we shall portray x as a discrete random variable with possible values

x = 0,1,2 ...2 and we wish to be able to compute the probabilities of each of these values

occurring.

In the following sections we shall examine one way of computing such probabilities.

First, we shall suggest the Poisson distribution as a means of finding the probabilities of

various values of recruiting successes, and of computing the chances of making mission.

Then we shall describe useful properties of the Poisson in the framework of a recruiting

scenario, showing how it may be used with multiple time periods of vaiying length, and

with combined performance of several recruiters who operate at different perfomnmce

levels. We shall apply this representation to several important concerns in the evaluation of

recruiting results.



The Poisson Distribution

A desirable property for the distribution form for x, the number of recruiting successes

in a time period, is that this form should not vary because of the length of the time period.

This means that if x had distribution form p(x) for each month with average or mean value

E(x), then the distribution form for three months of production y = x, + x2 + x3 should be

functionally the same with an average for the three-month period of E(y) = 3E(x). The

Poisson distribution has this property.

The number of recruiting successes in a time period is to be considered as a discrete,

integer-valued random variable bounded below by zero, so that x = 0,1,2. The

Poisson distribution represents such a random variable.

Finally, and most important, there should be some real-world justification for choosing

the Poisson. The Poisson has been shown to arise in many natural settings where the

random variable is the number of events occurring in a given time period (Ref 1).

Applications vary widely, and include the number of goals scored by a soccer player,

immigrant counts, pulses on a Geiger counter, bacteria counts, flying bomb hits in London

(WWII), and so on. In fact, one of the first observations of the Poisson arising in nature

was in a military setting, in that it properly represented the number of Prussian soldiers

killed by kicks from horses (Ref 2). Two widely studied applications of the Poisson are in

the study of waiting lines, and in Reliability theory. In waiting lines work was begun by

A.K. Erlang at the Danish Telephone Company in 1909, with the number of arriving calls

being the Poisson-distributed random variable (Ref 3). In the study of system and

component reliabilities, the use of the Poisson is to represent the number of failures per

unit time period, where the Poisson parameter is called the failure rate, and its reciprocal

is the MTBF, or mean time between failures (Ref 4). In these examples the time between

event arrivals is considered memoryless, and the number of event arrivals per unit time,

Poisson.
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The mathematical form for the Poisson distribution is

P(x) = x=0,1,2,.

In application computations using this functional form are rarely undertaken, with reliance

on standard tables of the cumulative form or computer packages. From this point forward

in this paper we shall simply let P(x) be the probability of x recruiting successes occurring

in the specified time interval, and use standard tables for numerical examples.

Properties of the Poisson Distribution

In its pure mathematical form the Poisson distribution has one parameter A, and a

random variable following this distribution will have a mean

E(x) = ,

and a variance (Ref I)

Var(x) = ;.

Thus a useful and simplifying attribute of Poisson-distributed random variables is that they

have the same numeric value for their mean and their variance.

In applications where x represents the number of arrivals in a time interval of length t,

the parameter A is represented as the product of t and the arrival rate. In applying this

distribution to recruiter productivity we shall take this parameter as the product of the

recruitment rate r, and the recruitment interval t, and say that the number x of recruiting

successes in the time interval of length t at recruitment rate r is Poisson distributed with

parameter
A rt.

If we measure time in units of one month, the recruitment rate should be measured in

successes per month. Note that neither rate r nor time t need be integer valued. The time

period could be, for example, t = 2.3 months.
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Here is an example of a set of Poisson probabilities. If we are interested in the number

of recruiting successes in one-month time periods, and the recruitment rate r is two

successes per month, the average per month is rt = 2.0 (which is also the Poisson

parameter) and the Poisson probabilities are shown in Table I below.

Table 1. Poisson Probabilities and Cumulative Probabilities
when the Mean Number is 2.0 per Month

x Probability of x Probability of x or less

0 0.135 0.135
1 0.271 0.406
2 0.271 0.677
3 0.180 0.857
4 0.090 0.947
5 0.036 0.983
6 0.012 0.995
7 0.004 0.999
8 0.001 1.000

This example shows that although the Poisson-distributed random variable lacks a distinct

upper bound (as do recruiting successes per month), the probabilities become negligible as

the random variable reaches high values beyond the mode of its distribution. It may also be

seen for this example that if the mission were four per month, the probability of not

making mission is the probability of three or less, or 0.857. Similarly, the chance of

making a mission of four is the chance of four or more, or 1 - 0.857 = 0.143.

A general Poisson property is that the sum of independent poisson-distributed random

variables is itself Poisson. Thus if x, is Poisson with parameter (and mean) rtit, and

independent random variable x2 is Poisson with parameter (and mean) r2t 2, then the sum

xI + x2 will be Poisson distributed with parameter (and mean) r1ti + r2t2. For a recruiting

scenario, for example, the combined output of two independently operating recruiters

performing at r! and r2 successes per month, respectively, will be Poisson with mean and

parameter r1t + r2t = (rI + r2)t. Also, a single recruiter operating at rate r successes per
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month will produce a total for three months which is Poisson with mean 3r. Well look at

several ccruiting implications of these Poisson properties in the next section.

How Many Months for a Mission?

Does the length of the mission period influence the chance of making mission? Can the

chance of a recruiter being successful be changed by simply changing the time period over

which the mission is defined?

We'll present an example where the starting place is a mission of M =2 for a one-

month period. Then, we'll contrast a recruiter's chance of making mission for a one-month

period, with two seemingly identical missions:

a. A mission of M = I for a 0.5 month period, and

b. A mission of M = 4 for a two-month period.

For our example, let the recruiter operate at the "mission level". This means that the

expected productivity is at the mission level, or that the mean of the Poisson distribution

for this recruiter is rt = M. For a mission of M = 2 in a one-month period, such a recruiter

would be characterized by recruitment rate of r = 2 in that the recruiter would produce, on

the average, two successes per month. The chance of making mission is

Pr(Make Mission) = Pr(x Ž2)

=I- Pr(x 5 1)

= 1- 0.406

= 0.594.

If we reduce the recruiting interval to 0.5 months, the mission should be halved to M =1,

and the recruiter (now at rt = 2(0.5) = 1.0) has a chance of making mission of

Pr(Make Mission) = Pr(x > 1)

= 0.632.

Here we use the Pr(x < 1) value from the example of Poisson probabilities shown in Table 1.
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On the other hand, doubling the recruiting interval to two months (and the mission to

M = 4) gives ri = 2(2) = 4.0, and the recruiter's chance of making mission is now

Pr(Make Mission) = Pr(x Ž4)

= 0.567.

Clearly, the three probabilities for the example above are not substantially different from

one another.

Similar calculations may be made for a recruiter who performs at a less-than-mission

level (say, r = 1), and for a recruiter who performs at a more-than-mission level (say,

r = 3). Results for all three recruiters are summarized in Table 2.

Table 2. Mission Success Probabilities With Various Recruiting Intervals

Probability of Making Mission

Interval 0.5 Months 1 Month 2 Month s
Mission 1 2 4
Success x2 >1 x Ž 2 x > 4

A less-than Mission- 0.393 0.264 0.143
Level Recruiter, r = 1.0
A Mission-LevelAMsinLvl0.632 0.594 0.567
Recruiter, r = 2.0

A more-than Mission- 0777 0.801 0.849
Level Recruiter, r = 3.0

The example in Table 2 shows that a recruiter's chance of making mission can be

changed by changing the time interval over which the mission is defined, even while

adjusting the mission value. These data suggest that a less effective recruiter will benefit

from a shorter recruiting interval, whereas an effective recruiter will benefit from longer

mission periods.

The influence of mission period on the chance of making mission is not necessarily

surprising. Intuition suggests that longer intervals will allow the effective recruiter to make
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better use of his surpluses, while shorter periods permit the ineffective recruiter more

chances at curtailing the size of his shortage. What does seem clear, however, is that

recruiting performance comparisons using the probability of making mission should always

involve the same size of recruiting interval on which the mission is defined.

The Recruiter Who Makes Mission 90% of the Time

As we have seen for a mission of size M = 2, a mission-level recruiter (one whose

average number of recruiting successes is equal to the mission value) will only make

mission about 60% of the time. How productive must a recruiter be to make mission 90%

of the time?

For a recruiting interval of one month, the chance of making mission for recruiters

who are mission-level, 50% better, and twice mission level, are shown in Table 3.

Table 3. Mission Success Probabilities for Various Recruiters
and a One-Month Recruiting Interval

Probability of Making Mission

Mission M 1 2 3

A Mission-Level 0.632 0.594 0.577
Recruiter, r = M

A Recruiter who is 50%
better than Mission
Level, r = (1. 5)M

A Recruiter who is
twice Mission Level,
r = (2)M

In this example three possible mission values are used, and for these cases we see that

even being a recruiter who is 50% better than mission level doesn't provide a 90% chance

of making mission. For a mission of M = 2 in one month, one has to be twice as good as a

mission level recruiter to attain that 0.90 probability.
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Table 4 below generalizes these results. Recruiter performance r is taken as a multiple

of mission value, so that r = yM, and Table 4 shows minimal values of y needed to attain,

for various missions, a 90% chance of making mission. These values hint at asymptotic

behavior at around 40% better than mission level, for one-month missions for individual

recruiters.

Table 4. Recruiter Performance Levels for a 90% Chance of Making Mission

Mission M Recruiter performance Multiple
r=yM y

1 2.4 2.4
2 4.0 2.0
3 5.4 1 8
4 6.8 1.7
5 8.0 1.6
6 9.5 1.6
7 11.0 1.6
8 12.0 1.6
9 13.0 1.4

10 14.5 1.4
15 22.0 1.4

Combining Recruitment Results: Two Recruiters

The fact that the sum of Poisson-distributed random variables is itself Poisson gives us

the chance to look at results when enlistments from several recruiters are combined.

Results here mirror those given earlier when we looked at the length of the mission period,

and examples are shown in Table 5. It is important to emphasize that these results assume

that the Poisson results which are combined are independent. What is shown are results

for recruiters who are continuing to operate independently, and not as teams. The

combining is done in scorekeeping.
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Table 5. Mission Success Probabilities When Recruiters are Grouped

Recruiter Individual Combined
Pairing Mission Chance Mission Chance

Two Mission-Level 2 0.594
Recruiters 2 0.594 4 0.567

One Mission-Level and one 2 0.594
50% better-than Mission 2 0.801 4 0.735

Two 50% Better-than 2 0.801
Mission Level 2 0.801 4 0.849

Two Twice Mission-Level 2 0.908
Recruiters 2 0.908 0.958

Table 5 shows that, as was the case when the time period was increased, the result of

combining results from good recruiters is a greater chance of making mission, whereas the

chance is reduced when results from ineffective recruiters are combined. Here, as in

previous examples, we have only looked at some trial values and not done a complete

analysis to determine where the switch occurs.

Combining Recruitment Results: Station Missioning

Results such as those shown in Table 5 can be expected when enlistments from more

than two recruiters are combined, as would be the case in station missioning. The chance

of the station making mission will exceed that of individuals who are good perfo: mers.

Bernoulli Trials and the Poisson Distribution

One measure of effectiveness for a recruiter's performance is, simply, the probability of

making mission. Here the (1,0) values for the Bernoulli variable are assigned to the events

of making mission, or not making mission, and the outcome of the mission period is

considered a Bernoulli trial. In this way making mission is modelled in a simple attribute or

yes-no manner, without direct reference to the actual number of recruiting successes.
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The "counting data" generated from multiple Bernoulli trials is often described by two

probability distributions. For a value of parameter p, the geometric distribution gives

probabilities for the number of consecutive Bernoulli trials until the first success. The

binomial distribution gives the probabilities for the number of success in a set of n

independent Bernoulli trials, each with parameter p. Here, for example, a frequent

application is to estimate p on the basis of data showing that in n periods, the recruiter

made mission x times.

Inferential statistics for our MOE p based on such counting data suffpr because of the

simple attribute measurement as Bernoulli trials. Large samples are needed to avoid large

confidence intervals for estimation of p, or soft OC curves for hypothesis tests for p. Data

from 50 or 100 mission periods may be needed to produce a useful estimate of p. If the

recruiter makes mission x times in n periods, the point estimate for his measure of

effectiveness is p = x/n, and a 95% confidence interval for a mid-range p value can be as

large as
p ± 1.96 (0.5) (1-0.5)/n,

and while this is a "worst case" example, it is readily seen that even for n = 100 recruitment

intervals, the 95% confidence interval for p will be ± 0.10. If a recruiter makes mission

twelve times in twenty periods, confidence bounds from the binomial distribution are 0.37

and 0.82, results which clearly have little utility.

Describing events as Bernoulli trials is necessary where all that is observed is the

presence of the attribute: the event happened, or it did not. In making mission this is not

the case because we are using a finer measure, viz., the actual number of recruiting

successes achieved in the period. We compare this variable measure with mission M to

determine if the attribute (made mission) is present or not. For a given number of periods

n, confidence intervals for estimating p should be smaller if based upon the variables

10



nusm (number o( successes. Poisson distributed) rahe than the atribu•e neasure

(made mission or not).

Exauump of FAtimatig tOw Proability of Making Mission

Continuing our exploration of the relationship to Bernoulli trials. hem is an example of

the estin'tion of p. the probability of making mission. For the same data set we will

genate•a 95% confidence interval for p treating the data as 18 Bernoulli trials

(attributes), and then find the confidence interval of p using the variables data and the

Poisson distribution.

Let the recruiting interval be one month, and the mission be M = 2 for a one-month

period. Generated using random numbers, eighteen months of recruiting successes per

month are:
1 2 0
1 2 1
1 0 3
2 1 2
2 1 2
0 1 3

Treating these as Bernoulli trials, we see that the mission of M = 2 was achieved eight

times, and the point estimate of the probability of making mission is 8/18 = 0.444. Of

course, this estimate does not reflect the number of months. Viewing the data as eighteen

independent Bernoulli trials, each with parameter p, gives a 95% confidence interval for p

of
0.22 < p < 0.68

when standard curves from the binomial distribution are employed (Ref 5). An alternate

way to find this confidence interval uses the normal approximation to the binomial, and

gives the similar result:
0.21:5 p: <0.67.
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When the data is viewed as variables data from a Poisson distribution. confidence

limits for the probability of mauking mission may be obtained by the following procedure.

The data has a sample mean of 1.389 and sample standard deviation of 0.916. The sample

size of eighteen allows us to invoke the central limit theorem regarding normality of the

sample mean. Authorities agree that 95% con'Kience limits for the Poisson mean are

(Ref 1)
1 ± 19.ý!/.L.

which with our data yield

0.845 S rt = A S 1.933.

Since the probability distribution function is monotone nondecreasing with the population

mean, these bounds can be used to obtain bounds for the chance that the number of

successes is one or fewer:
0.424 S I - p S 0.792.

Finally 95% confidence limits for the probability p of making mission are

0.208 :p 5 0.576.

Confidence intervals for p obtained in this manner should, in general, be smaller than those

obtained using the Bernoulli trial, binomial approach.

Discussion

On the previous pages we have looked briefly at some of the results that may be

obtained when the number of successful recruitments in the mission period is treated as a

Poisson-distributed random variable. Individual recruiter productivity was characterized

by the parameter of the Poisson, and we have shown some relationships between this

parameter and the probability of making mission.

In applying this representation to several recruiting questions, we have used numeric

examples rather than thorough analyses. For example, we have shown that the length of

the mission period influences effective and ineffective recruiters differently, but have not
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yet expkouW where. in mission size and length. the change occurs. Similarly, our numeric

eamiple gave a smaer confidence interval from the Poisson than from the binomial

distribution. However, in our example neither confidence interval was small enough to be

useful in estimation. Not yet addressed was the more general question of how many

observations (mission periods of data) to estimate the probability of making mission are

needed with each approach. Another topic we have only addressed briefly is that of station

missioning. The Poisson distribution will permit detailed analysis of the impact of

combining recruiter results through station rnissioning. Such a study could also look into

results when teamwork improves performance.

How appropriate is the Poisson distribution? Perhaps the most serious shortcoming in

the work presented here is not so much the use of the Poisson to represent counts of

randomly arriving successful recruitments, but rather, that we assumed that the

recruitment rate (or Poisson parameter) would be constant throughout the mission period.

There appear to be data suggesting that, if mission has not been made, the recruitment rate

will increase toward the end of the mission period. Here the distribution for shorter time

periods could still be Poisson, but with an increasing parameter. Arrivals early and late in

the mission period would not necessarily be independent events.

The Poisson distribution appears to offer a fertile means of investigating some aspects

of the recruiting process. It is hoped that the suggestions in this paper will lay the path to

more complete studies.
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